Part 3 - a sample story

Now that we’ve defined a vocabulary and took care of some basic requirements, we are ready to
develop a sample story. Our purpose is not to create an award winning story, but to illustrate how to
make locations, objects and timers and how they interact.

We won't make a full size adventure game (I'm not a great author anyway). It will be sort of a first
level where you are in a house and must make your way to the cellar. The tutorial game will end
when you descend the stairs to the cellar.

The map:

outside

ground floor

Upstairs

M dfs

first floor

The locations

There are 11 locations. We will enter them in the story file with their long descriptions, short
descriptions and directions. Actually, there are 12, we reserve on location, |_storage, to store objects
that are removed from play. |_storage is not accessible to the player.

Some locations require non-standard handling of certain directions:

o when going east from the living room, we want to go back to the location we came from,
south hallway or north hallway (we use an attribute to remember where we came from);
e going east from north hallway is not possible;

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 1

e going north from kitchen to garden is not possible when the kitchen door is locked;

e when the user has not examined the loose step on halfway stairs, going down from halfway
stairs will lead to south hallway. After the user examines the loose step, going down will lead
to the closet and south will lead to the south hallway.

The locations’ code is below. With each location, we will explain new functionality, if any. Some
locations also refer to objects, this code will be discussed with the object descriptions.

south hallway

SLOCATION I_hallway_south
DESCRIPTIONS
d_sys "the south hallway"
d_longdescr "You are in the south hallway. To the west is a passage to the /
living room. To the east are stairs leading up. The hallway /
continues to the north."
d_shortdescr "South hallway"
EXITS
n ->|_hallway_north
w ->|_living_room
u ->|_halfway
e ->|_halfway

TRIGGERS

"examine [|_hallway_south]" -> o_player.t_look

"west" ->t_west

“north” ->t_north

t_entrance
move(o_stairs, %this) # must be able to refer to stairs
nomatch()

t_west

remember where we came from
I_living_room.r_back = %this
nomatch()
t_north

must be able to refer to the closet door
o_closet_door.r_direction = east
o_closet_door.r_access =o0_closet_door.d_closet
move(o_closet_door, |_hallway_north)
nomatch()

END_LOC

Description d_sys is the system description. It is a predefined common description and is used by the
parser to map the user input to objects and locations.

To elaborate a bit, the user input is translated from a text string to separate words. The words are
looked up in XVAN's word table and replaced by their word id (a number). Next, groups of word ids
are held against the location and object tables and mapped on location or object ids. To map the
word ids to object/location ids the parser compares them to the word ids from d_sys. As an example,
the combination of two word ids for "south" and "hallway" will be mapped to one location id for
|_hallway_south. When an object or location has no d_sys description, it cannot be referred to by the
user.

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 2

Do not forget to include the article in the system description (d_sys). The compiler will strip it and
store it separately. Whenever you include [the] or [a] wildcards in a string followed by a location or
an object, the interpreter will check whether it has to print an article or not. If you did not include the
article in the system description it won’t print it. If you did include the article in d_sys but don’t use
[the] or [a] in a string, the article will not be printed either.

Aslash /" in a string tells the compiler to skip the next <cr> and spaces. It is used for formatting long
text strings so they are better readable in the source file.

It may seem a bit unusual to move around the stairs (in trigger t_entrance) but this is just how we
model the world. There are several locations from which the stairs are accessible. We could have
created individual stair objects in different locations but that would require more code to keep them
in sync. The net effect for the person playing the story will be the same and this makes our coding
effort easier.

Trigger t_north is used to move around the closet door. It’s like moving the stairs but a bit more
complicated and will be explained with the closet door object.

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 3

north hallway

SLOCATION |_hallway_north
DESCRIPTIONS
d_sys "the north hallway"
d_longdescr "You are in the north hallway. To the west is a passage to the /
living room. The hallway continues north to the kitchen."
d_shortdescr "North hallway"
EXITS
n ->|_kitchen
s ->|_hallway_south
w ->|_living_room

TRIGGERS
"examine [I_hallway_north]" -> o_player.t_look
"west" ->t_west
t_west

remember where we came from
I_living_room.r_back = %this
nomatch()

END_LOC

living room

SLOCATION I_living_room
DESCRIPTIONS
d_sys "the living room"
d_longdescr "This is the living room. It's completely abandoned. There is an /
exit to the hallway to the east."
d_shortdescr "Living room"
EXITS
no exits
ATTRIBUTES
r_back =1_hallway_south
TRIGGERS
"examine [l_living_room]" ->o_player.t_look
"[dir]"->t_go
t_go
if equal(%dir, east) then
move(o_player, r_back)
entrance(r_back)
disagree()
else
nomatch()
endif
END_LOC

We see that the living room location has a “%dir” trigger, as does the player object. We don’t know
the exact order in which objects that are in scope get the user input, but it is ensured that a
containing object gets it before its contained objects do. So the location always is the first to get the
user input. In our case, because we know the location gets to process the %dir command first, our
setup with the r_back attribute will work. In case the user enters any other direction than East, the
nomatch() will make the player object’s t_move trigger to further process the user input.

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 4

(c) 2016, 2017, 2018, 2019 Marnix van den Bos

kitchen

SLOCATION |_kitchen
DESCRIPTIONS
d_sys "the kitchen"
d_longdescr "This is the kitchen. There is not much here. The /
hallway is to the south."
d_shortdescr "Kitchen"
EXITS
s ->1|_hallway_north
TRIGGERS
"examine [l_kitchen]"-> o_player.t_look

n ->t_north
“s” ->t_south
t_entrance
printcr(d_shortdescr)
if not(testflag(f_seenbefore) AND not(testflag(o_player.f _verbose))) then
printcr(d_longdescr)
endif
move(o_kitchen_door, %this) # must be able to refer to the door
t_north
if testflag(o_kitchen_door.f_locked) then
printcr("The kitchen door is locked.")
else
if not(testflag(o_kitchen_door.f_open)) then
printcr("[[opening the kitchen door first]")
setflag(o_kitchen_door.f_open)
newexit(l_kitchen, north, |_garden)
endif
move(o_player, n) # also updates current location
entrance(l_location)
endif
disagree() # prevent o_player.t_move to execute the "n" command
t_south
must be able to refer to the closet door
o_closet_door.r_direction = east
o_closet_door.r_access =o0_closet door.d closet
move(o_closet_door, |_hallway_north)
nomatch()
END_LOC

The valdir() function checks for a valid direction (exit from the current location).

When the user wants to go north, the t_north trigger is fired. If the door is locked, we print a

rejection message. If it is unlocked but closed, we don't print a "the door is closed" rejection message,
but open the door for the player. Note the last disagree(). It tells the interpreter to stop and not offer
the user's command to other objects. If we forget it, the command will also be sent to the o_player
object who will execute it. Since at that moment we already are in the garden (t_north has already
moved the player object to the north), the player will finally end up in the shed.

Trigger t_south is used to move around the closet door. It’s like moving the stairs but a bit more
complicated and will be explained with the closet door object..

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 6

closet

SLOCATION |_closet
DESCRIPTIONS
d_sys "the closet"
d_longdescr "You are in a dark closet below the staircase. To the west is /
the closet door, which is closed."
d_shortdescr "Closet"
EXITS
u->|_halfway
d->1_cellar
TRIGGERS
"examine [|_closet]" ->o_player.t_look
"down" ->t_down
t_entrance
printcr(d_shortdescr)
printcr(d_longdescr)
if not(testflag(o_trapdoor.f_hidden)) then
printcr("Visible exits are up and down.")
else
printcr("The only visible exit is up.")
endif
t_down
if testflag(o_trapdoor.f_hidden) then
printcr("The carpet is blocking your way down.")
disagree()
else
if not(testflag(o_trapdoor.f_open)) then
printcr("The trapdoor is closed.")
disagree()
else
nomatch() #let o_player.t_move handle this
END_LOC

Flag f_hidden is a predefined common flag. When set, the object or location is treated by the parser
as not visible, so the player won't be able to refer to it.

cellar

SLOCATION |_cellar
DESCRIPTIONS
d_sys " the cellar"
d_burning "You walk down the stairs into the cellar. Down below you see /
the red glow of a fire. As you walk down further, it gets hotter /
and hotter. You realize you will be fried if you continue and you /
hurry back up the stairs."
d_not_burning "There is still a lot of smoke in the cellar, but through the /
hazes you can make out an old workbench to the east and a door /
to the north."
d_shortdescr "Cellar"

d_end "
/ *¥**x* this is the end of the tutorial *****
/ “"
EXITS

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 7

up ->|_closet

FLAGS
f tried_before =0

TRIGGERS
"examine [|_cellar]" -> o_player.t_look
t_entrance

if testflag(o_flames.f_extinguished) then
printcr(d_not_burning)
printcr(d_end)
quit()
else
if not(testflag(f_tried_before)) then
setflag(f_tried_before)
printcr(d_burning)
else
printcr("There's flames down there, remember?")
endif
move(o_player, u)
endif
agree()
END_LOC

halfway stairs

SLOCATION I_halfway
DESCRIPTIONS
d_sys "halfway"

d_longdescr "You are now halfway up the stairs. The stairs continue up /

to the north and down to the south."
d_shortdescr "Halfway stairs"

d_up_closed "When you walk further up the stairs one of the steps makes /
a hollow sound. You try to pinpoint it but get no further /
than that it is somewhere in the upper half of the stairs.

/ n

d _up_open "You carefully step over step 11, so you don't fall down /

into the closet.
/ n
EXITS
n ->|_upstairs
u ->|_upstairs
s ->|_hallway_south
d ->|_hallway_south

TRIGGERS
"examine [|_halfway]" -> 0_stairs.t_exa
"up" ->t_up
"north" >t up
“down” ->t_down
t_entrance

print(d_longdescr)
move(o_stairs, %this) # must be able to refer to stairs
agree()
t_up
if testflag(o_button.f_pressed) then

(c) 2016, 2017, 2018, 2019 Marnix van den Bos

step 11 is open
printcr(d_up_open)
else
printcr(d_up_closed)
t_down
must be able to refer to the closet door
o_closet_door.r_direction = west
o_closet_door.r_access =o_closet door.d_hallway
move(o_closet_door, |_closet)
nomatch()
END_LOC

Location halfway stairs has its own local t_entrance trigger, because we must move the stairs object
to this location when the player enters. If we don’t do this, then the user won’t be able to refer to
the stairs.

Trigger t_down is used to move around the closet door. It’s like moving the stairs but a bit more
complicated and will be explained with the closet door object..

upstairs

SLOCATION |_upstairs
DESCRIPTIONS
d_sys "upstairs"
d_longdescr "You are upstairs. Behind you, the stairs lead down. There /
is an exit to the west."
d_shortdescr "Upstairs"
d_down_closed "When you walk down, one of the steps makes a hollow sound. /
You try to pinpoint it but get no further than that itis /
at the top half of the stairs.\n”
d_down_open "You carefully step over step 11, so you don't fall down /
into the closet.\n"”

EXITS
s ->|_halfway
d -> |_halfway
w ->|_bedroom
TRIGGERS
"examine [|_upstairs]" ->o_player.t_look
"down" ->t_down
"south" ->t_down
t_entrance
move(o_stairs, %this) # must be able to refer to stairs
nomatch()
t_down

if testflag(o_button.f_pressed) then
step 11 is open
printcr(d_down_open)
else
printcr(d_down_closed)
END_LOC

Again, we move the stairs object in a local t_entrance trigger because the player must be able to
refer to the stairs. The local t_entrance trigger returns nomatch(), so the common t_entrance trigger
will be executed as well.

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 9

bedroom

SLOCATION |_bedroom
DESCRIPTIONS
d_sys "the bedroom"
d_longdescr "This location used to be a bedroom a long time ago. But /
now, there is nothing there. All furniture has been /
removed."
d_shortdescr "Bedroom"
d_exa"Mounted to the west wall are a water tap and a sink."
EXITS
e -> |_upstairs
TRIGGERS
"examine [|_bedroom]" -> o_player.t_look
t_entrance
printcr(d_shortdescr)
if not(testflag(f_seenbefore)) or testflag(o_player.f verbose) then
first visit or verbose mode
setflag(f_seenbefore)
printcr(d_longdescr)
endif
END_LOC

(c) 2016, 2017, 2018, 2019 Marnix van den Bos

10

garden

SLOCATION |_garden
DESCRIPTIONS
d_sys "the garden", "the hedges", "the hedge"
d_longdescr "You are in the garden at the back of the house. East and west /
there are hedges. To the north is a garden shed."
d_shortdescr "garden"
EXITS
s ->|_kitchen
n->|_shed
TRIGGERS
"examine [|_garden]" -> o_player.t_look
t_entrance
printcr(d_shortdescr)
if not(testflag(f_seenbefore) AND not(testflag(o_player.f_verbose))) then
printcr(d_longdescr)
endif
move(o_kitchen_door, %this) # must be able to refer to the door
END_LOC
The garden is also described as the hedge and hedges. When we use [|_garden] in a string, the
interpreter will always print it as “garden”, even if the user referred to it as hedge. If we want the
interpreter to print the system description that the player used last, then we must set the predefined

flag f_swap. Printing |_garden.d_sys will always print the first system description, regardless of

f swap.

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 11

shed

SLOCATION |_shed
DESCRIPTIONS
d_sys "the garden shed"
d_longdescr "You are now in the garden shed. The shed hasn't been cleaned /
for a long time. Maybe never. On the walls you see the nails /
that were used to hang the garden utensils to. Almost all of /
them are gone now."
d_shortdescr "Garden shed"
EXITS
s ->1|_garden
TRIGGERS
"examine [|_shed]" -> o_player.t_look
END_LOC

Why is the shed a location and not an object in the garden? That’s just a design choice, it could have
been an object as well. Making it an object in the garden is a bit more work though, because all user
input will then be offered to the garden as well and we may have to write extra code for t_entrance
and to move around (e.g. when in the shed object, “s” will take us to the kitchen).

The objects
Now that we’ve got the map, let’s take a look at the objects.

We have the following objects:

e player e button (on stairs)
e nst (no such thing) o closet door

e kitchen door e floor (in closet)

e kitchen window e carpet

e toaster e trapdoor

e key hole e drain pipe in bedroom
e rusty key e drain pipe in closet
e glass fragment e flames

e hacksaw e water tap

e stairs e water

° steps sink

Before going into the object descriptions, we’ll briefly describe the plot of this tutorial game:

e go to the kitchen

e get the toaster and throw it through the window

e |ook through the kitchen door and notice the key on the outside;
e open the kitchen door

e goinside the shed and get the hacksaw

e go back into the kitchen and get the window fragment

e go to the stairs and find the button near step 11

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 12

e move the step and go down into the closet

e cut the carpet with the fragment

e open the trapdoor and see the flames

e cut the drain pipe with the hacksaw

e go up to the bedroom and open the water tap

e go back into the closet and see that the flames are extinguished by the water
e enter the cellar

e end of first level

In the next sections we’ll describe the objects, list the code and clarify where necessary.

player
We already addressed the player object in section 2 of the tutorial.

nst
o_nst is the ‘no-such-thing’ object. It’s predefined by the compiler and must be in de story file. It is
used with disambiguation rules as explained in part 5 of this tutorial. We'll leave it for now.

it
We want the player to be able to refer to a previous object by “it”. We won’t use it in this tutorial,
but the o_it object is predefined by the compiler and must be in the story file. Don’t worry about it.

Note: the o_nst and o_it objects are predefined in the XVAN Starter Kit (o_it as of version 1.1). If you
use the Starter Kit, nst and it are taken care of automatically.

kitchen door

Is in the kitchen and leads to the garden. The door is locked and the key is in the key hole on the
other side of the door. In the door is a window. The window and key hole are also defined as objects
with their own t_entrance triggers.

It was a design decision to not mention the window in the door descriptions, because the window
must be broken at some point which would result in outdated descriptions. It is better to let the
window object handle this by itself.

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 13

SOBJECT o_kitchen_door

DESCRIPTIONS
d_sys "the kitchen door"
d_longdescr "The door is made of wood; it gives access to the garden."
d_longdescrl "The door is made of wood; it leads back into the kitchen."
d_shortdescr "To the north is a door that leads to the garden."
d_shortdescrl "To the south is a door that leads to the kitchen."
d_no_window "In the upper half of the door is an opening where /

a window used to be "

CONTAINED in |_kitchen

FLAGS
f openable =1
f lockable =1

f locked =1
TRIGGERS
"examine [o_kitchen_door]" ->t_exa
"look through [o_kitchen_door]" -> 0_kitchen_window.t_look_through

"unlock [o_kitchen_door] with [o_rusty key]"->t_unlock
"turn [o_rusty_key]" ->t_unlock

"open [o_kitchen_door]" ->t_open
"close [o_kitchen_door]" ->t_close
t_entrance

if owns(l_kitchen, %this) then
printcr(d_shortdescr)

else
printcr(d_shortdescrl)

t_exa

if owns(l_kitchen, %this) then
print(d_longdescr)

else
print(d_longdescrl)

endif

if testflag(f_open) then
print(" The door is open. ")

else print(" The door is closed. ")

endif

print info about window and keyhole

if testflag(o_kitchen_window.f_broken) then
print(d_no_window)

else
print(o_kitchen_window.d_shortdescr)

endif

printcr(o_keyhole.d_shortdescr)

contents(o_keyhole)

t_unlock

if not(owns(o_player, o_rusty_key)) and not(owns(o_keyhole, o_rusty_key)) then
printcr("[[picking up the rusty key first]")
move(o_rusty_key, o_player)

endif

verb prologue will check if already unlocked

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 14

if not(owns(o_keyhole, o_rusty key)) then
printcr("[[putting the rusty key in the keyhole]")
endif
printcr("Ok, the kitchen door is now unlocked.")
clearflag(f_locked)
t_open
test for already open is done by verb prologue
if not(testflag(f_locked)) then
printcr("Ok, the kitchen door is now open")
setflag(f_open)
newexit(l_kitchen, north, |_garden)
else
printcr("The door seems to be locked.")
t_close
test for already closed is done by verb prologue
printcr("Ok, the kitchen door is now closed.")
clearflag(f_open)
blockexit(l_kitchen, n)
END_OBI
To create and delete exits we use functions newexit() and blockexit().
For this object, we also need verbs "unlock" and "open". And while we're at it, we will create "lock"
and " close" as well.
With these verbs we test as many general things (already open/closed/locked/unlocked) in the verb
prologue, so we don't have to repeat the same tests in the objects. The general tests do require
some additional common flags: f_openable, f_open, f_lockable, f locked.
verb unlock

SVERB unlock
PROLOGUE
if not(equal(o_subject, %none)) then
if not(testflag(o_subject.f lockable)) then
printcr("[the] [o_subject] is not something that can be unlocked.")
disagree()
else
if not(testflag(o_subject.f locked)) then
printcr("But [the] [o_subject] [o_subject.r_be] not locked.")
disagree()
endif
endif
endif # endifs at the end of code may be omitted
"unlock"
printcr("What do you want to unlock?")
getsubject()
"unlock [o_subject]"
printcr("How do you want to unlock [the] [o_subject]?")
getspec()
"unlock [o_subject] with [o_spec]"
printcr("[the] [o_actor] cannot unlock [the] [o_subject] with [the] [o_spec].")
DEFAULT
printcr("l only understood you as far as wanting to unlock something.")
ENDVERB

verb open

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 15

SVERB open
PROLOGUE
if not(equal(o_subject, %none)) then
if not(testflag(o_subject.f_openable)) then
printcr("[the] [o_subject] is not something that can be opened.")
disagree()
else
if testflag(o_subject.f _open) then
printcr("But [the] [o_subject] [o_subject.r_be] is already open.")
disagree()
endif
endif
endif
"open"
printcr("What do you want to open?")
getsubject()
"open [o_subject]"
printcr("[the] [o_actor] can't open that.")
ENDVERB

(c) 2016, 2017, 2018, 2019 Marnix van den Bos

16

verb lock

SVERB lock
PROLOGUE
if not(equal(o_subject, %none)) then
if not(testflag(o_subject.f lockable)) then
printcr("[the] [o_subject] is not something that can be locked.")
disagree()
else
if testflag(o_subject.f locked) then
printcr("But [the] [o_subject] [o_subject.r_be] is already locked.")
disagree()
endif
endif
endif
"lock"
printcr("What do you want to lock?")
getsubject()
"lock [o_subject]"
printcr("How do you want to lock [the] [o_subject]?")
getspec()
"lock [o_subject] with [o_spec]"

DEFAULT

printcr("l only understood you as far as wanting to lock something.")
ENDVERB

printcr("[the] [o_actor] cannot lock [the] [o_subject] with [the] [o_spec].")

verb close

SVERB close
PROLOGUE
if not(equal(o_subject, %none)) then
if not(testflag(o_subject.f_openable)) then
printcr("[the] [o_subject] is not something that can be closed.")
disagree()
else
if not(testflag(o_subject.f _open)) then
printcr("But [the] [o_subject] [o_subject.r_be] is already closed.")
disagree()
endif
endif
endif
EPILOGUE
if not(islit(o_player)) then
they may have closed a container with the light source
printcr("It is now pitch black.")
disagree()
"close"
printcr("What do you want to close?")
getsubject()
"close [0_subject]"
printcr("[the] [o_actor] can't close that.")
ENDVERB

(c) 2016, 2017, 2018, 2019 Marnix van den Bos

17

You notice that for verb close we also have an epilogue. In the epilogue we check if closing the
subject made the light source invisible. For example, if the player puts his flashlight in a box and
closes it, it will become dark. The epilogue will detect this.

kitchen window

As already mentioned with the kitchen door object, the kitchen window is an autonomous object,
because it will have different behavior once it is broken. It makes less sense to code this all with the
door object.

SOBIJECT o_kitchen_window
DESCRIPTIONS
d_sys "the kitchen window"
d_longdescr "The window is made of glass, which somehow doesn't /
surprise you."
d_shortdescr "In the upper half of the door is a window "
d_smash_no "You smash the window with your fist, but with no /
success. You need something heavy to break the /
window."
d_broken "\nScattered over the floor is a broken window that /
once was a part of the door."
d_look_glass "Through the window you see the garden. At the far /
face to the window and try to look down but can't /
see right behind the door. If you could only stick /
your face further through."
d_look_no_glass "Because the window is no longer there, you can stick /
your head through the hole. There's a rusty key in /
the outside of the keyhole!"
d_climb "You don't fit through the window. It's way too small (or /
you are too big)."
CONTAINED in o_kitchen_door

FLAGS
f broken=0
TRIGGERS
"examine [o_kitchen_window]" >t _exa

"look through [o_kitchen_window]" ->t_look_through
"break [o_kitchen_window]" ->t_break_no

"break [o_kitchen_window] with [o_spec]" ->t_break

"throw [o_subject] [prepos] [o_kitchen_window]" ->t_throw
"climb through [o_kitchen_window]" ->t_climb

"go through [o_kitchen_window]" ->t_climb

t_entrance

if testflag(f_broken) then
printcr(d_broken)
t_look_through
if testflag(f_broken) then
printcr(d_look _no_glass)
clearflag(o_rusty_key.f hidden)
else
printcr(d_look_glass)
t_break no
printcr(d_smash_no)

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 18

break and throw cannot be the same trigger because they
have their subject and specifier reversed.
t_break
print("You throw [the] [o_spec] at the window")
if not(testflag(o_spec.f_heavy)) then
printcr(", but it bounces back. It obviously isn't /
heavy enough.")
move(o_spec, |_kitchen)
else
printcr(" and it goes straight through. The window /
is shattered all over the floor. One of the /
glass fragments is a bit larger than the rest.")
move(o_spec, |_garden)
setflag(f_broken)
move(%this, |_kitchen)
move(o_fragment, |_kitchen)
endif
t_throw
may only work for 'at' and 'through'
if equal(%prepos, at) OR equal(%prepos, through) then
print("You throw [the] [o_subject] at the window")
if not(testflag(o_subject.f_heavy)) then
printcr(", but it bounces back. It obviously isn't /
heavy enough.")
move(o_subject, |_kitchen)
else
printcr(" and it goes straight through. The window /
is shattered all over the floor. One of the /
glass fragments is a bit larger than the rest.")
move(o_subject, | _garden)
setflag(f_broken)
move(%this, |_kitchen)
move(o_fragment, |_kitchen)
endif
else
nomatch()
t_climb
printcr(d_climb)
disagree()
END_OBJ
Triggers t_break and t_throw are almost identical. But because they have subject and specifier

reversed, we must code separate triggers. We also need an additional common flag for these triggers:

f _heavy.
We must also define some additional verbs in our vocabulary: break, throw and climb.

verb climb

SVERB climb
"climb"
printcr("What do you want to climb?")
getsubject()

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 19

"climb [0_subject]"
printcr("[the] [o_subject] is not something to climb.")
"climb [prepos] [o0_subject]"

printcr("[the] [o_actor] cannot climb [prepos] [the] [o_subject].")
DEFAULT

printcr("l only understood you as far as willing to climb something.")
ENDVERB

(c) 2016, 2017, 2018, 2019 Marnix van den Bos

20

verb break

VERB break SYNONYM destroy
"break"
printcr("What do you want to break?")
getsubject()
"break [0_subject]"
printcr("[the] [o_actor] can't break [the] [o_subject].")
"break [0_subject] with [o_spec]"
printcr("[the] [o_actor] can't break [the] [o_subject] with [the] [o_spec].")
DEFAULT
printcr("l only understood you as far as wanting to break something.")
ENDVERB

verb throw

VERB throw
PROLOGUE
actor must hold the subject
if not(equal(o_subject, %none)) then
if not(owns(o_actor, o_subject)) then
printcr("[the] [o_actor] must be holding [the] [o_subject] first.")
disagree()
endif
endif
"throw [o_subject] [dir]",
"throw [o_subject] to [dir]"
if valdir(l_location, %dir) then
move(o_subject, %dir)
printcr("Thrown.")
else
printcr("[the] [o_subject] bumps to the [dir] wall and falls on the floor.")
move(o_subject, |_location)
"throw [o_subject] [prepos] [o_spec]"
printcr("Throwing [the] [o_subject] [prepos] [the] [o_spec] won't work.")

DEFAULT
printcr("l only understood you as far as wanting to throw something.")
ENDVERB

We also coded some standard functionality in the throw verb for throwing objects in a particular
direction.

The strings "throw [o_subject] to [dir]" immediately follows "throw [o_subject] [dir]". This means
that the code that follows applies to both commands.

Next, we’ll continue with the keyhole object.

keyhole

SOBJECT o_keyhole
DESCRIPTIONS
d_sys "the keyhole"
d_longdescr ""

(c) 2016, 2017, 2018, 2019 Marnix van den Bos

d_shortdescr "and you also see a keyhole."
d_peek "You peek through the keyhole but you cannot see a thing. /
something on the other side of the keyhole blocks your view."
d_look "You see the garden. At the far east end, thereis a/
garden shed."
CONTAINED in o_kitchen_door
TRIGGERS
"examine [o_keyhole]" ->t_look_through
"look through [o_keyhole]" ->t_look_through
t_entrance
don't print there is a keyhole when entering the room
agree()
t_look_through
if owns(o_keyhole, o_rusty key) then
if cansee(o_player, o_rusty key) then
printcr("You can't, since there is a key in the keyhole.")
else
printcr(d_peek)
endif
else
printcr(d_look)
endif
disagree()
END_OBJ

With the keyhole object we don’t use d_longdescr and d_shortdescr. For examining we use
t_look_through and default t_entrance will always use d_sys because the keyhole is a part of the
door that cannot be removed (“.... [this]....” Will print d_sys from the current object).

This part of the common t_entrance trigger applies for the keyhole object:

(c) 2016, 2017, 2018, 2019 Marnix van den Bos

22

else

if not(owns(o_player, %this, 0)) then
#it’s not (in) some object the player carries (0 means all levels of containment)
setflag(f_seenbefore)
print("There is [a] [this] [r_preposition] [the] ")
print(owner(%this))
printcr(".")

endif

rusty key

SOBIJECT o_rusty_key
DESCRIPTIONS
d_sys "the rusty key"
d_longdescr "An old rusty metal key.'
d_shortdescr "An old rusty metal key.'
CONTAINED in o_keyhole
FLAGS
f takeable=1
f_hidden =1 # keyisin the other side of the keyhole
TRIGGERS
"inventory" >t i
"examine [o_rusty_key]" >t _exa
END_OBJ

(c) 2016, 2017, 2018, 2019 Marnix van den Bos

23

glass fragment

SOBJECT o_fragment
DESCRIPTIONS
d_sys "the glass fragment", "the shard", "the splinter"
d_longdescr "The fragment is about 5 inches long and has a sharp edge."
d_shortdescr "There is a glass fragment here."
d_carpet "You cut the carpet along its sides and it comes loose /
from the floor, revealing a trapdoor!"
CONTAINED in |_storage
FLAGS
f takeable=1
TRIGGERS
"inventory" >t i
"examine [o_fragment]" ->t_exa
"cut [o_carpet] with [o_fragment]" ->t_cut
t_cut
if not(owns(o_player, %this)) then
printcr("[[picking up the fragment first]")
endif
if not(testflag(o_carpet.f_cut)) then
setflag(o_carpet.f cut)
move(o_trapdoor, |_cellar)
move(o_carpet, o_player)
setflag(o_carpet.f_bypass)
printcr(d_carpet)
else
printcr("You already did that.")
END_OBJ

We don’t want the carpet lying around after cutting it, so we make the player pick it up in the cut
action.

For the glass fragment we need to define the verb “cut”.

(c) 2016, 2017, 2018, 2019 Marnix van den Bos

verb cut

SVERB cut SYNONYM saw
"cut
printcr("What do you want to cut?")
getsubject()
"cut [o_subject]"
printcr("How do you want to cut [the] [o_subject]?")
getspec()
"cut [o_subject] with [o_spec]"
printcr("[the] [o_actor] cannot cut [the] [o_subject] with [the] [o_spec].")
DEFAULT
printcr("l only understood you as far as wanting to cut something.")
ENDVERB

toaster
The toaster object is in the kitchen. We need the toaster to break the window in the kitchen door so

we can reach the key that is on the outside of the door

The toaster object

SOBJECT o_toaster
DESCRIPTIONS
d_sys "the toaster"
d_longdescr "An old toaster, quite heavy. The power cord /
has been cut off."
d_shortdescr "There's a toaster here."
CONTAINED in I_kitchen

FLAGS

f takeable =1

f_heavy =1
TRIGGERS

"inventory" >t i

"examine [o_toaster]" >t _exa
END_OBJ

We set flag f_heavy for the toaster so it can be used to break the window in the kitchen door.

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 25

hacksaw

SOBJECT o_hacksaw
DESCRIPTIONS
d_sys "the hacksaw", "the saw"
d_longdescr "This is just an ordinary hacksaw. It can be used /
to saw metal objects. The saw looks a bit worn, /
but it probably will last for one more saw job."
d_shortdescr "There is a hacksaw here."
d_no_saw "The saw is pretty worn. It will probably last for /
one more saw job and your planned action is unlikely /
to be that job."
d_worn "The saw is completely worn out. Whatever you are going to /
do with it, it won't be a saw job."
CONTAINED in |_shed
FLAGS
f takeable =1
f_worn =0
TRIGGERS
"inventory" >t i
"examine [o_hacksaw]" ->1t_exa
"saw [0_subject] with [o_hacksaw]" ->t_saw
t_exa
if testflag(f_worn) then
printcr(d_worn)
else
printcr(d_longdescr)
endif
disagree()
t_saw
if not(equal(o_subject, o_drain_pipe_closet)) then
if testflag(f_worn) then
printcr(d_worn)
else
printcr(d_no_saw)
END_OBJ

We only allow the user to use the hacksaw once, to cut the drain pipe in the closet. For all other
situations we have defined rejection messages.

We do not make a separate “saw” verb but define a synonym for the “cut” verb instead.

stairs
The stairs is an object that will be available in the following locations:

e | _hallway_north
e | halfway;
e | upstairs.

From within these locations, the player must be able to refer to the stairs. The stairs will be moved to
the location once the player enters it.

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 26

The first time the examine command is given, it will only work if the player is in location |_halfway
(halfway up the stairs). Once examined from location |_halfway, the examine command will also
work from the other two locations (we use flag f_exa to check for this).

SOBJECT o_stairs
DESCRIPTIONS
d_sys "the stairs", "the staircase"
d_exa"You see nothing special about the stairs."
d_exa_hollow"It looks just like a staircase with one /
step that sounds hollow when stepped on."
d_longdescr "It's a wooden staircase. There are 15 steps. You can refer /
to a particular step with 'step <number>"."
d_shortdescr "" #included in room description for hallway south and halfway
d_count "There are 15 steps. You can refer to a particular step with /
'step <number>"."
d_cant_see "It's hard to get a good view from here. If you were halfway /
the stairs you would have a better view."

CONTAINED in I_hallway_south

FLAGS
f exa=0 # Not yet examined.
TRIGGERS
"examine [o_stairs]" ->t_exa
"look at [o_stairs]" ->t_exa
"count [o_steps]" ->t_count
t_entrance
agree() # Must execute t_entrance for contained objects (steps).
t_exa

if (equal(l_location, |_hallway_south) OR equal(l_location, |_upstairs))
AND not(testflag(f_exa)) then
printcr(d_cant_see)
else
we are halfway
if they have not yet heard the hollow sound, we don't mention it
if testflag(l_upstairs.f_seenbefore) then
setflag(f_exa)
printcr(d_exa_hollow)
else
printcr(d_longdescr)
t_count
printcr(d_count)
END_OBJ

Now, we also need a verb 'count':

SVERB count
"count”
printcr("1 2 3")
"count [o_subject]"
printcr("[the] [o_subject] is not something that can be counted.")
DEFAULT
printcr("l only understood you as far as wanting to count something.")
ENDVERB

(c) 2016, 2017, 2018, 2019 Marnix van den Bos

steps

The steps object is part of the stairs. There are 15 steps and they can be referred to individually (but
there is only one steps object). Referring to steps goes by “step <number>". The number entered by
the player is captured in the %ord wildcard, where ord stands for ordinal.

A little something about number wildcards

XVAN has two number wildcards: %value and %ord. The difference is best explained with some
examples:

%ord captures ordinal numbers, something with a certain order. “examine step 5” will cause the
number 5 to be stored in %ord.

%value captures values, all other numbers. “set dial to 1234” or “enter 1234 on keypad” will store
the number 1234 in %value.

Step 11 is a special step, as soon as the player examines it, he will be notified that there is a button
next to the step.

the steps object

SOBJECT o_steps
DESCRIPTIONS
d_sys "the steps", "the step"
d_longdescr "There's a tiny button on the side of the step."
d_shortdescr ""
d_15 "There are only 15 steps."
d_which "If you want to do something to a specific step, please refer to /
the step as 'step <number>'."
d_moved 11 "Step 11 has disappeared, revealing a passage down."
CONTAINED in o_stairs
FLAGS
f_swap =1 #always print the d_sys last referred to by the user
TRIGGERS
"examine [o_steps]" ->t_exa
"examine [o_steps] [ord]" ->t_exa_step
t_entrance
agree()
t_exa
if not(trigger(o_stairs.t_exa)) then
disagree()
t_exa_step
if (equal(l_location, |_hallway_south) OR equal(l_location, |_upstairs))
AND not(testflag(o_stairs.f _exa)) then
printcr(o_stairs.d_cant_see)
disagree() # stop
endif
if It(%ord, 1) or gt(%ord, 15) then
printcr("Steps are numbered from 1 to 15.")
else
step 11 gives access to the closet
if equal(%ord, 11) then
if not(testflag(o_button.f_pressed)) then
printcr(d_longdescr)
clearflag(o_button.f_hidden)
else

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 28

printcr(d_moved_11)
else
printcr("You see nothing special about step [ord].")
t_default
if equal(o_subject, o_steps) then
printcr(d_which)
disagree()
else
nomatch() # this is important for default verb code
END_OBJ
The trigger() function is used to execute a trigger from another object or location. It returns true or

false. When the trigger to be executed returns disagree, the trigger() function will return false.

The t_default trigger is a special system defined trigger. If none of the triggers of an object fired, the
t_default trigger - if present - will fire. We use it here to catch all actions on the steps that we did not
foresee and print a message on how to refer to the steps. Since the o_steps object receives ALL user
input, it must check the subject and only reply if the subject is o_steps. If not, it is very important to
return a nomatch() result because otherwise the interpreter will see that atrigger fired and it will not
call verb code.

button
The button is hidden until the player examines step 11.

SOBJECT o_button
DESCRIPTIONS
d_sys "the button"
d_longdescr "A round button in the same color as the stairs. You have to look /
really close to notice it."
d_shortdescr "
/ There's a tiny button on the side of step 11."
d_press "As you press the button, step 11 retracts a bit, lowers /
about an inch and then slides backwards out of sight, /
revealing a passage down into the closet!"
CONTAINED in |_halfway

FLAGS

f_hidden =1
f pressed =0
TRIGGERS

"examine [o_button]" ->t_exa
"examine [o_stairs]" -> t_exa_stairs
"press [o_button]" ->t_press
t_entrance
if not(testflag(f_hidden)) then
the button is visible
if not(testflag(f_pressed)) then
printcr(d_shortdescr)
else
printcr(o_steps.d_moved_11)
t_exa_stairs
if not(testflag(f_hidden)) then
printcr(d_shortdescr)

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 29

t_press
if testflag(f_pressed) then
printcr("Nothing happens.")
else
printcr(d_press)
o_player.r_score += 50
printcr("")
printcr("[[Your score just went up by 50 points!]")
setflag(f_pressed)
blockexit(l_halfway, d)
newexit(l_halfway, d, |_closet)
endif
disagree()
END_OBJ

closet door
The closet door cannot be opened. Access to the closet is through the staircase when step 11 is open.

SOBJECT o_closet_door
DESCRIPTIONS
d_sys "the closet door"
d_longdescr "The closet door seems to be locked."

d_shortdescr "To the [r_direction] is a door that gives access /
to [r_access]."
d_closet "a closet under the stairs"
d_hallway "the north hallway"
d_no_unlock "[the] [o_spec] does not fit."
CONTAINED in |_hallway_north

ATTRIBUTES
r_direction =east
r_access =d_closet
FLAGS

f openable =1
f lockable =1
f locked =1
TRIGGERS
"east"->t_east
"examine [o_closet_door]" ->t_exa
"open [o_closet_door]" ->t_locked
"unlock [o_closet_door] with [o_rusty_key]" ->t_unlock
t_east
printcr("The closet door is closed.")
disagree()
t_locked
printcr(d_longdescr)
t_unlock
printcr(d_no_unlock)
END_OBI

The closet door is moved around between locations |_hallway_north and |_closet. We see that its
shortdescr description contains two attributes: direction and access. Depending on whether the

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 30

closet door object is in the north hallway or the closet, we change the value of the attributes. This

ensures that in t_entrance the correct description will be printed:

“To the east is a door that gives access to a closet under the stairs.”

Or

“To the west is a door that gives access to the north hallway.”

But, wait a second. | understand you want to move the closet door to the locations where it must be

in scope. | compared it to the stairs object that is moved around as well, and the stairs object is

moved in the t_entrance trigger from the location where it must end up whereas the closet door

object is moved in a special trigger from the location that the player is leaving.

=>when the player is moving from south hallway to halfway stairs, the stairs object is moved to
halfway stairs in t_entrance from halfway stairs.

=>when the player is moving from the kitchen to hallway north, the closet door object is moved in
t_south from the kitchen and NOT in t_entrance from hallway north.

Why?

There’s a good reason for that. The stairs object has no actions for its t_entrance trigger (other than

agree). The closet door’s t_entrance trigger must print a description. Remember that in the player’s

t_move trigger the entrance(l_location) function is called? This function creates a list of all objects

whose t_entrance must be called. If one of these t_entrance triggers adds another object (like

moving the stairs or the closet door) this object will not be on the list and its t_entrance trigger will

not be called. For the stairs this is not an issue, because its t_entrance doesn’t do anything, but for

the closet door it is. We solved it by moving the closet door from the current location if the player is

going to a location from where he must be able to refer to the closet door.

But, the living room also leads to the north hallway does not have a trigger to move the closet door

to the north hallway? Right, but the only way you can go from the living room to the north hallway is

when you came from the north hallway first. So the closet door will already be there.

floor

The floor is sort of a scenery object. We want the user to be able to refer to the floor, but is has all
the default replies. We override the common t_entrance trigger with a local one that doesn’t do
anything, because we don’t want the floor to be mentioned when entering the closet or when
looking around.

When necessary, the carpet and the trapdoor will respond to “examine floor”. The floor object will
check whether carpet or trapdoor are visible and if not, it will make sure (through nomatch()) that
the examine verb prints the default message.

SOBJECT o_floor
DESCRIPTIONS
d_sys "the floor"
CONTAINED in |_closet
TRIGGERS
"x [o_floor] " ->t_exa
t_entrance # don't call common t_entrance
agree()
t_exa
if owns(l_closet, o_carpet) OR not(testflag(o_trapdoor.f_hidden)) then
do nothing, carpet and/or trapdoor will print a message
agree()

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 31

else
let verb print default message
nomatch()
END_OBJ

Next are the carpet and the trapdoor.

Carpet

The carpet hides the trapdoor. The sides of the carpet are glued to the floor. To reveal the trapdoor,
the player has to cut the sides of the carpet with the glass fragment. After cutting the carpet we
don’t want it to lay around, so we move it into the player’s inventory.

SOBJECT o_carpet
DESCRIPTIONS
d_sys "the old carpet"
d_longdescr "The carpet doesn't seem very expensive. It just /
about covers the floor. On a closer examination, it /
turns out that its sides are glued to the floor."
d_shortdescr "On the floor is an old carpet."
d_cut "You use the [o_fragment] to cut along the glued /
sides of the carpet. You grab the middle part /
of the carpet that now is no longer attached to /
the floor and lift it. Removing the carpet /
reveals a trapdoor in the floor!."
d_no_move "The carpet won't move. On closer examination /
you find that its edges are glued to the floor."
d_exa_moved"It's just an old carpet with the edges cut off /
by a sharp object."
CONTAINED on o_floor
FLAGS
f takeable =1
f _moveable =1
f cut=0
TRIGGERS
“inventory" ->t i
"examine [o_carpet]"->t_exa
"examine [o_floor]" ->t_exa

"lift [o_carpet]" ->t_move
"take [o_carpet]" ->t_move
"move [o_carpet]" ->t_move
"cut [o_carpet] with [o_fragment]" ->t cut
t_exa
if not(testflag(f_cut)) then
nomatch()
else
printcr(d_exa_moved)
t_move

if testflag(f_cut) then
printcr("You already cut the carpet loose.")
else
printcr(d_no_move)
t_cut

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 32

if not(testflag(f_cut)) then
printcr(d_cut)
setflag(f_cut)
clearflag(o_trapdoor.f_hidden)
move(o_carpet, o_player)

else
printcr("You already cut the carpet.")

endif

disagree()

END_OBJ

trapdoor

When the player opens the trapdoor while the flames are not extinguished, we only allow him three
more turns in the closet before it gets too hot. We define a timer m_heat that counts down and fires
after three moves

timer m_heat

m_heat
init 3
step 1
direction down
interval 1
state stop
trigger_at 0
execute |_closet.t_leave

We must define a local trigger t_leave with the closet object.
Situations when the timer is started/stopped/updated:

e when the player enters the closet with trapdoor open and flames not extinguished: timer
started;

e when the player is in the closet and opens the trapdoor and flames not extinguished: timer
started;

e when the player leaves the closet: timer stopped and set to 3 in trigger t_exit;

o when the player is in the closet and closes the trapdoor: timer stopped and set to 3.

object trapdoor

SOBJECT o_trapdoor
DESCRIPTIONS
d_sys "the trapdoor", “the trap door”
d_longdescr "The trapdoor is made of laminated wood. It seems large /
enough for a person to fit through.."
d_shortdescr "In the middle of the floor is a trapdoor, "
d_open "The trapdoor gives access to the cellar. Through the open /
trapdoor you see a stairway leading down."
CONTAINED in |_closet

FLAGS
f_hidden =1
f openable =1
TRIGGERS

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 33

"examine [o_trapdoor]" >t _exa
"open [o_trapdoor]" ->t_open
"close [o_trapdoor]" ->t_close
t_entrance
if not(testflag(f_hidden)) then
print(d_shortdescr)
setflag(f_seenbefore)
if testflag(f_open) then
printcr("which is open.")
player cannot see the flames
if not(testflag(o_flames.f_extinguished)) then
printcr(o_flames.d_flames)
starttimer(m_heat) # will count downto 0
endif
else
printcr("which is closed.")
t_exit
if testflag(o_flames.f_extinguished) then
stop and reset the heat timer
stoptimer(m_heat)
m_heat=3
t_open
setflag(f_open)
print(d_open)
if not(testflag(o_flames.f_extinguished)) then
starttimer(m_heat)
printcr(o_flames.d_flames)
else
printcr("")
t_close
if not(testflag(o_flames.f_extinguished)) then
printcr("lIt's less hot now. This feels much better.")
stoptimer(m_heat)
m_heat=3
else
printcr("closed.")
endif
clearflag(f_open)
END_OBJ

And we also need a trigger t_leave that we will code in location |_closet. Why in |_closet and not in
the trapdoor? Well, both are possible, we chose |_closet because leaving seems like a location thing.

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 34

new version of |_closet

SLOCATION |_closet
DESCRIPTIONS
d_sys "the closet"
d_longdescr "You are in a dark closet below the staircase. To the west is /
the closet door, which is closed."
d_shortdescr "Closet"
d_leave "\nThe heat is getting too much for you. You hurry back up to the /
stairs where it is much cooler.”
EXITS
u ->|_halfway
TRIGGERS
"examine [|_closet]" -> o_player.t_look
t_entrance
printcr(d_shortdescr)
printcr(d_longdescr)
if not(testflag(o_trapdoor.f_hidden)) then
printcr("Visible exits are up and down.")
else
printcr("The only visible exit is up.")
endif
t_leave
timer m_heat has fired
stoptimer(m_heat)
m_heat =3
printcr(d_leave)
move(o_player, u)
printcr("")
printcrbold(l_halfway.d_shortdescr)
END_LOC

(c) 2016, 2017, 2018, 2019 Marnix van den Bos

35

flames

SOBJECT o_flames
DESCRIPTIONS
d_sys "the flames", "the fire"
d_longdescr "Because of the heat you cannot get close enough for
a good examination."
d_shortdescr "" # flame entrance printed by the trapdoor
d_flames "A tremendous heat is coming through the open trapdoor. /
You look down and see a dark red glow deep down in /
the cellar."
d_extinguish "As soon as the water touches the flames, you hear a loud hissing /
sound, followed by the appearance of lots of steam. After a /
while, the hissing gets less until it completely stops. The fire /
has died.\nlt seems safe to go down into the cellar now."
CONTAINED in I_cellar
FLAGS
f_extinguished =0
TRIGGERS
"examine [o_flames]"->t_exa
"extinguish [o_flames]" ->t_extinguish
t_entrance
agree()
t_extinguish
printcr("It's up to you to find a way how to do that.")
END_OBJ

water tap
The water tap is in the bedroom. The tap can be opened and closed. “Turn tap” checks the current

position and then does the opposite.
When the following prerequisites have been fulfilled when opening the tap:

e trapdooris open;
e drain pipe in closet is cut with the hacksaw;
e fireis not extinguished.

The fire in the cellar will be extinguished.

If the trapdoor is closed but the drain pipe has been cut, there will be water in the north hallway,
pouring from under the closet door.

SOBJECT o_tap
DESCRIPTIONS
d_sys "the tap"
d_longdescr "It's a tap for cold water."
d_shortdescr "" # printed in t_entrance from sink.
d_open "As you turn the tap to open it, water starts /
pouring into the sink."
d_extinguish "After a little while, you faintly here a hissing /

(c) 2016, 2017, 2018, 2019 Marnix van den Bos

36

sound, coming from somewhere below.'
CONTAINED in |_bedroom

FLAGS
f openable =1 # for open prologue
TRIGGERS
"examine [o_tap]" ->t_exa
"open [o_tap]" ->t_open
"close [o_tap]" ->t_close
"turn [o_tap]"->t_turn
"turn on [o_tap]" ->t_open
"turn off [o_tap]" ->t_close
t_entrance

tap is handled by sink, because we want
to execute the sink t_entrance first
agree()
t_exa
if testflag(f_open) then
printcr("Water is pouring out of the tap into the sink.")
else
printcr("The tap is closed.")
endif
disagree()
t_open
if testflag(f_open) then
printcr("The water is already running.")
else
setflag(f_open)
clearflag(o_water_bedroom.f_hidden)
if testflag(o_drain_pipe_closet.f_cut) then
clearflag(o_water_closet.f _hidden)
if not(testflag(o_trapdoor.f_open)) then
put water in the hallway north
clearflag(o_water_hall_n.f_hidden)
endif
endif
printcr(d_open)
if not(testflag(o_flames.f_extinguished)) and
testflag(o_trapdoor.f_open) and testflag(o_drain_pipe_closet.f cut) then
setflag(o_flames.f_extinguished)
printcr(d_extinguish)
endif
endif
t_close
if not(testflag(f_open)) then
printcr("It's already closed.")
else
clearflag(f_open)
setflag(o_water_bedroom.f_hidden)
setflag(o_water_closet.f_hidden)
water in hallway north remains
printcr("The waterflow stops when you close the tap.")
t_turn

(c) 2016, 2017, 2018, 2019 Marnix van den Bos

37

if testflag(f_open) then
if not(trigger(t_close)) then
disagree()
endif
else
if not(trigger(t_open)) then
disagree()
endif
endif
END_OBJ

(c) 2016, 2017, 2018, 2019 Marnix van den Bos

38

sink object
The sink is there because we need the drain pipe. It's a scenery object.

SOBJECT o_sink
DESCRIPTIONS
d_sys "the sink"
d_longdescr "The sink is connected to a drain pipe, which disappears /

into the floor."
d_shortdescr "There is a sink mounted to the wall. Above the sink /
is a water tap."
CONTAINED in |_bedroom
TRIGGERS
"examine [o_sink]" ->t_exa
END_OBI

We're almost there. All we must do now is describe water objects to make the game more realistic.
We want to allow the player to refer to the water when he opens the tap. There are three locations
where the player can refer to the water: in the bedroom, in the closet and in the north hallway when

the waters comes from under the closet door when the trapdoor is closed.

And of course, when we have water, we must also have a “drink” verb.

(c) 2016, 2017, 2018, 2019 Marnix van den Bos

39

water in bedroom
When the tap is closed the water is hidden.

SOBJECT o_water_bedroom
DESCRIPTIONS

d_sys "the water"

d_longdescr "Just plain ordinary water."

d_shortdescr "Water is running from the tap into the sink."
CONTAINED in |_bedroom

FLAGS
f _hidden =1
f takeable =1
TRIGGERS
"examine [o_water_bedroom]" >t _exa
"get [o_water_bedroom]" ->t_get
"drink [o_water_bedroom]" ->t_drink
t_get

printcr("You have nothing with you that can hold the water.")

t_drink

printcr("That's refreshing! You didn't realize you were thirsty.")

END_OBJ

(c) 2016, 2017, 2018, 2019 Marnix van den Bos

40

water in closet

SOBJECT o_water_closet
DESCRIPTIONS
d_sys "the water"
d_longdescr "Just plain ordinary water."
d_shortdescr "" # printed by drain pipe
d_no_drink "It's better not to drink from the floor. if /
you are thirsty, better go to the tap in/
the bedroom for some fresh water."
CONTAINED in |_closet

FLAGS
f_hidden =1
f takeable =1
TRIGGERS

"examine [o_water_closet]" ->t_exa
"get [o_water_closet]" ->t _get
"drink [o_water_closet]" ->t_drink
t_entrance
agree() # handled by closet
t_get
printcr("You have nothing with you that can hold the water.")
t_drink
printcr(d_no_drink)
END_OBI

(c) 2016, 2017, 2018, 2019 Marnix van den Bos

41

water in hallway north

SOBJECT o_water_hall_n
DESCRIPTIONS
d_sys "the water"
d_longdescr "Just plain ordinary water."
d_shortdescr "From underneath the closet door, water /
is coming into the hallway."
d_no_drink "It's better not to drink from the floor. if /
you are thirsty, better go to the tap in/
the bedroom for some fresh water."
CONTAINED in I_hallway_north
FLAGS
f_hidden =1
f takeable =1
TRIGGERS
"examine [o_water_hall_n]" ->t _exa
"get [o_water_hall_n]" >t _get
"drink [o_water_hall_n]" ->t_drink
t_get
printcr("You have nothing with you that can hold the water.")
t_drink
printcr(d_no_drink)
END_OBJ
Verb drink

SVERB drink
"drink"
printcr("What do you want to drink?")
getsubject()
"drink [o_subject]"
printcr("[the] [o_actor] cannot drink [the] [o_subject].")
DEFAULT
printcr("l only understood you as far as wanting to drink something.")
ENDVERB

drain pipe in bedroom
The drain pipe in the bedroom is sort of scenery. It is used to help the player make the link between
the drain pipe in the closet and the bedroom and to deduct that he should cut the pipe in the closet

and turn on the water to extinguish the flames.

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 42

We have a rejection message in case the player tries to saw this drain pipe.

SOBJECT o_drain_pipe_bedroom
DESCRIPTIONS
d_sys "the drain pipe"
d_longdescr "The drain pipe emerges from the sink and disappears in /
the floor."
d_shortdescr "Attached to the wall is a drain pipe."
d _no_cut "It makes little sense to cut the drain pipe here."
CONTAINED in |_bedroom
TRIGGERS
"examine [o_drain_pipe_bedroom]" ->t_exa
"cut [o_drain_pipe_bedroom] with [o_hacksaw]" >t _cut
t_cut
printcr(d_no_cut)
END_OBJ

drain pipe in closet

SOBJECT o_drain_pipe_closet
DESCRIPTIONS
d_sys "the drain pipe"
d_longdescr "The drainpipe comes down where the ceiling meets /
the west wall, goes vertically down the west /
wall and disappears in the floor."
d_shortdescr "Attached to the wall is a drain pipe."
d_cut "About halfway up the wall, the pipe has been cut."
d_cut_again "You try to cut the pipe (again), but the hacksaw has /
become blunt after you used it the first time."
d_pour "Water pours out of the upper half of the broken pipe /
on the floor, "

d_pour_to_hallway "where it disappears under the closet door into the hallway.'

d_pour_in_cellar “through the open trapdoor straight into the cellar."
CONTAINED in |_closet
FLAGS

f cut=0 # notyet cut.
TRIGGERS

"examine [o_drain_pipe_closet]" >t _exa

"cut [o_drain_pipe_closet] with [o_hacksaw]"->t_cut

t_entrance

print(d_shortdescr)
if testflag(f_cut) then
print(d_cut))
if testflag(o_tap.f_open) then
print(d_pour)
if testflag(o_trapdoor.f_open) then
printcr(d_pour_in_cellar)
else
printcr(d_pour_to_hallway)
endif
endif

(c) 2016, 2017, 2018, 2019 Marnix van den Bos

43

else
if testflag(o_tap.f_open) then
printcr("You hear water running through the pipe.")
t_exa
if not(testflag(f_cut)) then
printcr(d_longdescr)
else
printcr(d_cut)
if testflag(o_tap.f_open) then
print(d_pour)
if testflag(o_trapdoor.f_open) then
printcr(d_pour_in_cellar)
else
printcr(d_pour_to_hallway)
endif
endif
endif
t_cut
if not(testflag(f_cut)) then
setflag(f_cut)
setflag(o_hacksaw.f_worn)
printcr("You cut the pipe about halfway above the floor.")
if testflag(o_tap.f_open) then
print(d_pour)
clearflag(o_water_closet.f _hidden)
if not(testflag(o_trapdoor.f_open)) then
printcr(d_pour_to_hallway)
else
printcr(d_pour_in_cellar)
printcr(o_flames.d_extinguish)
move(o_flames, |_storage)
endif
endif
else
printcr(d_cut_again)
endif
END_OBJ

End of part 3

This ends part 3 of the tutorial. We now have a complete playable story. It’s not the most exiting
story, but the purpose of this tutorial is to show how to make an XVAN story, it’s not a writing course.

Everything we’ve done until now is in files part3-end.lib and part3-end.xvn. To make a playable game
file, run the compiler and enter part3-end.xvn as the story file name. Name the output file 'out.dat’.
The output file may have any name, but if you want to use the Glk Interpreter, it must be called
out.dat. The compiler will generate the output file that can be played using the interpreter. How to
start the compiler and interpreter for different operating systems can be found in the XVAN
installation and user guide.

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 44

In the remainder of this tutorial are two optional parts. Optional meaning that they are not necessary
because we have a working story after part 3.

Part 4 goes into the look and feel. It changes background and text colors to white on blue and it
makes use of the status window for the Glk version of the interpreter.

Part 5 demonstrates how to build some intelligence into verbs to parse ambiguous user input
without asking the user for further clarification.

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 45

	Part 3 – a sample story
	The locations
	south hallway
	north hallway
	living room
	kitchen
	closet
	cellar
	halfway stairs
	upstairs
	bedroom
	garden
	shed

	The objects
	player
	nst
	it
	kitchen door
	kitchen window
	keyhole
	rusty key
	glass fragment
	toaster
	hacksaw
	stairs
	steps
	button
	closet door
	floor
	Carpet
	trapdoor
	flames
	water tap
	sink object
	water in bedroom
	water in closet
	water in hallway north
	drain pipe in bedroom
	drain pipe in closet

	End of part 3

