Part 2 - Basic things

Before we start working on our story we must define some basic stuff that we can reuse with other
stories. Things like:

e common descriptions;

e common flags;

e common attributes;

e common triggers;

e logging;

e save and restore functions (to store progress);
e regression testing;

e the player object;

e mechanism for starting the game;

e mechanism for moving the player between locations;
e |ooking around;

e scoring mechanism;

e verbose function;

e quit function.

At this point it is helpful to read sections “locations objects and timers” (2 pages) and “location and
object artifacts” (5 pages) from the XVAN Introduction document.

Inputs for this part of the tutorial are files partl-end.lib and part2-start.xvn.

Common descriptions

Common descriptions are descriptions that each location and object has. This is the reason they can
be used with wildcards: it is guaranteed that they can be found at a later time when the wildcard is
linked to an actual object or location.

We will use the following common descriptions (apart from the predefined descriptions):

d_longdescr long location or object description;
d_shortdescr short object description;

We make the following design decisions:

e For locations, d_shortdescr always is the location name only.

e Upon first visit of a location, the location's d_shortdescr and d_longdescr are printed;

e With following visits only d_shortdescr is printed;

e For an object, with each visit only d_shortdescr is printed;

e For objects the “examine” command prints d_longdescr;

e For locations the “examine” command acts as the “look” command (see further);

e We will also define a verbose() function to allow forced printing of long location descriptions
at all times.

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 1

Common flags
We will use the following common flags (apart from the predefined flags):

f seenbefore to determine whether to print long or short description.

Common attributes
We will use the following common attributes (apart from the predefined attribute):

r_be conjugation of verb "to be” for location or object;
r_have conjugation of verb “to have” for location or object.

We must also define words for is, are, has and have in the vocabulary file. | chose to define them as
verbs so they can also be used in user input (e.g. "where is the toaster"). If you only want to use
them as attribute values for printing, they may have any word type.

Common triggers
We will use the following common triggers (apart from the predefined triggers):

ti to print inventory
t_exa toexamine

We make the following design decisions:

e When the player object enters a new location the predefined trigger t_entrance will be
executed for the new location and all its contained objects;

e When the player object wants to exit from a location the predefined trigger t_exit will be
executed for the current location and all its contained objects. If any of them responds with
disagree() the player will not be allowed to leave the location;

We will now define the common triggers.

ti
This trigger was already mentioned in part 1 of the tutorial. The inventory verb will print the "You are
carrying" message and each object will print its description.

Our t_i common trigger

ti
if owns(o_player, %this) then
indent() # indent level was set by the verb prologue
printcr("[a] [this]")
else
nomatch()

Because this is a common trigger, each object and location will now have this trigger (you don’t have
to worry about memory space, the code is only stored once). In case an object needs to print a
different message (e.g. add text like "being worn") it suffices to redefine the trigger as a local trigger
with the same name within the object body. Local triggers take preference over common triggers
with the same name.

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 2

There's something new, here. The function nomatch() generates the third possible return code for a
trigger (the others are agree() and disagree() as explained in part 1). With nomatch() a location or
object tells the interpreter "forget that | had a match for this input". But why do we need nomatch(),
we can also print nothing and return agree(), right? Wrong. If we return agree(), the interpreter
would know there had been a match and no verb default code would be executed. So if the player
carried nothing and all objects in the location would return agree(), the default verb text "nothing,
you are empty-handed" would not be printed.

Nomatch() is quite powerful. If you redefine a common trigger and the local copy returns nomatch().
the interpreter will execute the common trigger as well. | use this sometimes to let the object do a
quick test and if everything is ok, execute the common trigger after all.

t_exa
Our design decision states that we should print d_longdescr.

Our t_exa common trigger

t_exa
printcr(d_longdescr)
setflag(f_seenbefore)

the interpreter will know for which object or location the common trigger is executed, so it can
locate the right description and flag. We could also have said printcr(%this.d_longdescr) and
setflag(%this.f_seenbefore).

t_entrance
As per our design decision, t_entrance is triggered when the player object enters a new location. We
want it to:

e print information about the location (long or short description);
e print information about the objects in the location;
e print information about objects in/fon/under/.. other objects.

Here we go, comments added for clarification.

t_entrance
if not(islit(o_player)) then
printcr("It is pitch black.")
disagree() # ready, exit
endif
if equal(%this, |_location) then
#|_location is wildcard for the current location

printcr(d_shortdescr) # print location name
if not(testflag(f_seenbefore)) then
first visit

setflag(f_seenbefore)
printcr(d_longdescr)
endif
else
#it’s not the current location but an object in the location
if cansee(o_player, %this) then
if owns(owner(o_player), %this) then

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 3

object is at the same containment level as player
setflag(f_seenbefore)
printcr(d_shortdescr)
else
if not(owns(o_player, %this, 0)) then
#it’s not (in) some object the player carries (0 means all levels of containment)
setflag(f_seenbefore)
print("There is [a] [this] [r_preposition] [the] ")
print(owner(%this))
printcr(".")
endif
endif
endif
endif
all the endifs are not necessary at the end of a trigger.

So, what t_entrance does:

e check whether it's dark;

e check whether it's executed for the location (as opposed to an object in the location);

e check whether it's executed for an object in the location that the player can see;

e check whether this object is contained in another object not carried by the player if the
object is carried by the player, we don’t want to mention it).

Note: make sure to close the current IF-statement with an ENDIF when starting a new if statement. If
you find that parts of your trigger should be executed but are not, you may have forgotten an ENDIF
statement. If you forget the first ENDIF (line 5), nothing of the trigger will be executed when the
player is lit because all lines will be considered part of the if not(islit(o_player)) branch.

In case the common t_entrance should not be executed for an object, define an empty t_entrance
trigger locally with the object. Empty as in that it only contains an agree() function. We do this for
example for the player object.

t_exit
As per our design decision, t_exit is triggered when the player object exits the current location. We
want it to:

e check whether the player object is free to go.
e if not, it must return disagree()

As leaving a location is game specific, in our basic definitions the t_exit trigger will always return
agree().

t_exit
agree()

But how does it work then? We'll come to that when we define the player object, but here's a heads-
up: XVAN has a function called exit(par). This function will call t_exit for par and all its contained
objects. If one of the t_exit triggers returns disagree(), the exit function will return false and we know
there's some object not allowing the player to exit the current location. Likewise, there is also an
entrance(par) function that calls all t_entrance triggers.

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 4

logging

To log your game session, XVAN has the built-in transcript() function. This function copies user input
and the game's response to a file called transcript.txt in the directory that the game is running from.
Calling transcript for the second time will turn off logging. We will define transcriptas a verb in the
vocabulary file so it can be used for all games.

VERB transcript
"transcript"
transcript()
DEFAULT
printcr(“use ‘transcript’ to log your session.”)
ENDVERB

save and restore functions

To store and load game progress, XVAN has functions save() and restore(). The save() function stores
the current story progress in a file called save.dat in the directory that the game is running from. The
restore() functions scans the directory for save.dat and loads it.

In order to use the functions, we create verbs “save” and “restore” in the vocabulary file. Restoring a
game is pretty straightforward and always allowed, so we will define the restore functionality in the
vocabulary file. The code for saving will be a local trigger in the player object. Why? Well, there may
be game specific situations when we do not allow the user to save. For example in a maze or to
prevent trial-and-error guessing when solving a puzzle.

SVERB save
define your save functionality in the story file
DEFAULT
printcr(“Use ‘save’ to save your progress.”)
ENDVERB
SVERB restore
"restore"
restore()
printcr("restored.")
DEFAULT
printcr(“use ‘restore’ to restore a previously saved game.”)
ENDVERB

quit function

SVERB quit SYNONYM q
"quit"
print("Do you really want to quit? ")
if yesno() then
quit()
DEFAULT
printcr("use 'quit' to leave the game.")

ENDVERB
The yesno() function requires the user to enter "yes", "no", "y" or "n". It is not case sensitive.

o_player object
The player object is mandatory in each XVAN story file.

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 5

Before we start, the player object in part2-start.xvn looks like this:

SOBJECT o_player
The o_player object is predefined and represents the human player.
DESCRIPTIONS
d_sys
CONTAINED
FLAGS
ATTRIBUTES
TRIGGERS
END_OBI

For starters, we will:

e set the system descriptions (d_sys) to “you” and "me";

e set common attribute r_be to “are”;

e set common attribute r_have to "have";

e define the nouns "you"and "me" and the "are" verb in the vocabulary file;

e override common triggers t_entrance and t_exit with local ones that do nothing.

(c) 2016, 2017, 2018, 2019 Marnix van den Bos

SOBJECT o_player
The o_player object is predefined and represents the human player.
DESCRIPTIONS
d_sys “You”, "me"
CONTAINED # don’t know where the player starts until we have the game map
FLAGS
ATTRIBUTES
r be=are #youare
r_have = have # you have
TRIGGERS
t_entrance
agree()
t_exit
agree()
END_OBJ

Next, we will define the following basic stuff in the player object:

e starting the game;

e moving the player between locations;

e |ooking around;

o keeping the score;

e save and restore commands to store progress;
e logging;

e verbose function.

starting the game

If we do nothing, the game will just start with a “> “ prompt. However, we want to print some
introductory text when the game starts. XVAN has no default starting mechanism, so we make our
own. We define a timer m_init that reaches its threshold when the game starts.

m_init
init 0
step 1
direction up
interval 1
state go
trigger_at 1
execute o_player.t_init

With the player object, we will define a trigger t_init and a description d_init. The trigger prints the
description.

SOBJECT o_player
The o_player object is predefined and represents the human player.
DESCRIPTIONS

d_sys “You”, "me"

d_init “*k**¥ XVAN tutorial ***”
CONTAINED # don’t know where the player starts until we have the game map
FLAGS
ATTRIBUTES

r be =are #youare

(c) 2016, 2017, 2018, 2019 Marnix van den Bos

r_have = have # you have
TRIGGERS
t_entrance
agree()
t_exit
agree()
t_init
printcr(d_init)
printcr("")
entrance(owner(o_player))
END_OBJ

After starting the game, timer m_init expires and triggers o_player.t_init. This will print d_init, our
opening message and describe the player's initial location.

Moving the player around

XVAN has no default mechanism to let the player move between locations. We will create our own
mechanism. We will use several of XVAN’s built-in functions to implement moving around. XVAN’s
built in functions are described in detail in a separate document.

In order to move around the player we must:

e make the player object catch user input about moving around;

e checkif the direction indicated in the user input is a valid direction;

e check with all objects in scope whether the player may leave;

e move the player object to the new location and execute the t_entrance triggers.

(c) 2016, 2017, 2018, 2019 Marnix van den Bos

This is our new player object

SOBJECT o_player
The o_player object is predefined and represents the human player.
DESCRIPTIONS
d_sys “You”, "me
d_init “k%* XVAN tutorial ***”
CONTAINED # don’t know where the player starts until we have the game map
FLAGS
ATTRIBUTES
r be =are #youare
r_have = have # you have
TRIGGERS
"[dir]" ->t_move
“go to [dir]”-> t_move
t_entrance
agree()
t_exit
agree()
t_init
printcr(d_init)
printcr("")
entrance(owner(o_player))
t_move
if valdir(l_location, %dir) then
#it's a valid direction
if exit(l_location) then
no object objects to the player leaving the room
move(o_player, %dir) # move updates current location
entrance(l_location)
endif
else
nomatch() # let other objects or verb default code react.
endif
agree()
END_OBI

What do we see here? Right below the TRIGGERS keyword we see two possible user inputs that will
fire the t_move trigger. In the t_move trigger, the valdir() function checks if the direction is a valid
direction. If not, the t_move trigger returns nomatch(). In case none of the other objects react, the
default verb code will be executed which will print “you can’t go that way”.

If the direction is valid, the exit() function will execute the t_exit triggers from all objects in the
current location (and from the current location itself). If all return agree(), then the player object will
be moved in the direction indicated by the user input. Finally, for the new location and all its
contained objects, the t_entrance trigger will be executed.

You may have noted that move() accepts different kinds of parameters. With the verbs take and drop,
we used move(objectl, object2) which moved object2 in objectl. With t_move we used move(object,

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 9

direction) which moved object to the location that is reached by going into the direction. Possible
parameters combinations are listed in the function description document.

looking around
To enable the player to look around we define trigger t_look locally with the player object.

This trigger will call the entrance() function for the player’s location. This means that for the player’s
location and each containing object, the t_entrance trigger will be called.

The player’s t_look trigger

t_look
if equal(owner(o_player, |_location)) then
clearflag(l_location.f_seenbefore)
entrance(l_location)
else
the player is in some object. Print this information
print(“[[[prepos] [the] “)
print(owner(o_player)
print(“]1.”)
clearflag(owner(o_player).f_seenbefore)
entrance(owner(o_player))

Because we (ab)use the entrance() function in our look command, we must clear the f_seenbefore
flag before calling the entrance() function. The reason is that the t_entrance trigger will check for
f _seenbefore and if it's set it will print the short description.

Why are there 3 ‘[“ in the print statement? We want to print something like “[in the boat]”. However,
for the compiler, a ‘[“ in a string means that a parameter will follow. We tell the compiler to print one
‘" by entering ‘[[*. So, ‘[[[‘ tells the compiler to print a ‘[and that a parameter will follow.

Note that just defining t_look does not mean that the t_look trigger will be executed when the user
enters “look”. We must yet link the trigger to a user input. This is done at the beginning of the
TRIGGERS section in the player object:

“look” ->t_look
Now the interpreter knows that whenever the user enters “look”, it must execute the t_look trigger.

keeping the score
To keep track of the score, we define a local attribute r_score with the player object. We also define
a verb “score” in the vocabulary and a local trigger t_score for the player object that prints the score.

save function

We create a local trigger t_save with the player object. Additionally, we create a local flag f_no_save
with the player object. The t_save trigger will check the flag and if it is set, it will not save game
progress. This can be used to prevent cheating. For example, when the player enters a maze, an
object may set the o_player.f_no_save flag and thus prevent the player from saving progress while
he is in de maze.

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 10

verbose function

By invoking the verbose functionality, the t_entrance triggers will always print the long location
descriptions (d_longdescr). We define the verb ‘verbose’ in the vocabulary file and a local flag
f_verbose with the player object. Next we change the common t_entrance trigger so it will test for
the f_verbose flag before printing the location description.

This is what we have right now:

In the vocabulary file we’ve added:

SVERB score
DEFAULT
printcr(“Use ‘score’ to get information about your score.”)
ENDVERB
VERB verbose
DEFAULT
printcr(“use ‘verbose’ to toggle long room descriptions.”)
ENDVERB

‘score’ and ‘save’ will be handled by the player object. All other input with these verbs will print the
default message.

Our player object with all the basic stuff we wanted:

SOBJECT o_player
The o_player object is predefined and represents the human player.
DESCRIPTIONS
d_sys “You”, "me"
d_init “*** XVAN tutorial ***”
CONTAINED # don’t know where the player starts until we have the game map
FLAGS
f_no_save =0
f_verbose =0
ATTRIBUTES
r be =are #youare
r_have = have # you have
TRIGGERS
"[dir]"->t_move
“go to [dir]” ->t_move
“look” ->t_look
“score” ->t_score
“save” ->t_save
“verbose” ->t_verbose
t_entrance
agree()
t_exit
agree()
t_init
printcr(d_init)
printcr("")
entrance(owner(o_player))
t_look
if equal(owner(o_player), |_location) then
clearflag(l_location.f_seenbefore)

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 11

entrance(l_location)
else
the player is in some object. Print this information
print("[[[prepos] [the] ")
print(owner(o_player))
printcr("].")
endif
if cansee(o_player, owner(owner(o_player))) then
entrance(owner(owner(o_player)))
else
entrance(owner(o_player))
t_move
if valdir(l_location, %dir) then
#it's a valid direction
if exit(l_location) then
no object objects to the player leaving the room
move(o_player, %dir) # move updates current location
entrance(l_location)
endif
else

nomatch() # let other objects or verb default code react.

endif
agree()
t_score
printcr(“Your score is [r_score] points.”)
t_save
if testflag(f_no_save) then
printcr(“Saving at this point would be like cheating.”)
else
save()
printcr(“saved.”)
t_verbose
if testflag(f_verbose) then
clearflag(f_verbose)
printcr(“Verbose mode turned off.”)
else
setflag(f_verbose)
printcr(“Verbose mode turned on.”)
END_OBJ

And our common t_entrance trigger, adapted for verbose functionality:

t_entrance

if not(islit(o_player)) then
printcr("It is pitch black.")
disagree() # ready, exit

endif

if equal(%this, |_location) then
#|_location is wildcard for the current location
printcr(d_shortdescr)

if not(testflag(f_seenbefore)) or testflag(o_player.f_verbose) then

first visit or verbose mode
setflag(f_seenbefore)

(c) 2016, 2017, 2018, 2019 Marnix van den Bos

12

printcr(d_longdescr)
endif
else
#it’s not the current location but an object in the location
if cansee(o_player, %this) then
if owns(owner(o_player), %this) then
object is at the same containment level as player
setflag(f_seenbefore)
printcr(d_shortdescr)
else
if not(owns(o_player, %this, 0)) then
#it’s not (in) some object the player carries (0 means all levels of containment)
setflag(f_seenbefore)
print("There is [a] [this] [r_preposition] [the] ")
print(owner(%this))
printcr(".")
endif
endif
endif
endif
all the endifs are not necessary at the end of a trigger.

End of part 2
This ends part 2 of the tutorial. We’ve finished our preliminary work that we can use as a starting
point for future stories.

Everything we did is in files part2-end.lib and part2-end.xvn. These files are the starting point for part
3 of the tutorial where we will write our sample story.

The files we created in part 2 will not compile to an XVAN story. This is because part2-end.xvn is not
yet complete. By the end of the next part 3 we will have a playable story.

(c) 2016, 2017, 2018, 2019 Marnix van den Bos 13

(c) 2016, 2017, 2018, 2019 Marnix van den Bos

14

	Part 2 – Basic things
	Common descriptions
	Common flags
	Common attributes
	Common triggers
	t_i
	t_exa
	t_entrance
	t_exit
	logging
	save and restore functions
	quit function
	o_player object
	starting the game
	Moving the player around
	looking around
	keeping the score
	save function
	verbose function

	End of part 2

