
(c) 2016 – 2022 Marnix van den Bos 1

XVAN Library 1.4
-- Library –

-- everything is a location, an object or a timer –

(c) 2016 – 2022 Marnix van den Bos 2

Table of Contents
What’s new? .. 3

Introduction ... 4

Verbs .. 5

Locations ... 8

Objects ... 9

Timers .. 10

Artefacts .. 11

Descriptions ... 11

Flags ... 11

Attributes... 13

Triggers .. 14

Templates .. 16

Verbs .. 16

Locations ... 17

Objects ... 18

Timers .. 19

Redefining verbs and common triggers .. 20

IFI-XVAN ... 22

Verbs .. 22

Locations ... 22

Objects ... 22

Timers .. 23

Descriptions ... 23

Flags ... 23

Attributes... 23

Triggers .. 23

Annex: using the Library in your story .. 25

(c) 2016 – 2022 Marnix van den Bos 3

What’s new?
The XVAN Library version 1.3 has been tested with the XVAN IF Authoring System version 2.4.

In Library version 1.1:

 Support for ‘all’ and ‘it’.

In Library version 1.2:

 Verbs “use” and “unused” were added (for use with IFI-XVAN);

 Verbs “sit”, “knock”, “poke”, put, jump, sing, cry, yell, say, touch and xyzzy were added;

 Verb “restart” was added;

 Use of function notimers() for actions: save, restore, score, transcript and verbose;

 Some small changes in some actions;

 Some changes to o_all object;

 Some changes to o_it object;

 New file ifi-actions.lib for use with IFI-XVAN.

In Library version 1.3

 The Starter Kit is now called Library;

 Verbs “exits”, “goto”, “kick”, “remember”, “thank”, and “undo” were added;

 Common description d_remember was added;

 Common flags f_supporter and f_fixed were added;

 Common trigger t_reveal was added;

 Common attribure r_nr_to_reveal was added.

In Library version 1.4

 New implementation of the undo function.

(c) 2016 – 2022 Marnix van den Bos 4

Introduction
XVAN is an Interactive Fiction authoring system: a compiler, an interpreter and an authoring

language. The XVAN distribution comes with a set of sample stories and a tutorial on how to create

an XVAN story from scratch.

Why do I need the Library?

Actually you don’t. The compiler, interpreter and a simple text editor like notepad, textedit or vi are

all that is needed to start creating stories.

But the Library offers a head start to begin writing XVAN stories. It has definitions for actions (verbs)

commonly used in IF-works, definitions for mandatory objects, as well as a basic dictionary and a set

of attributes, flags and triggers that you most likely will need in your stories.

Everything in the Library is ‘normal’ XVAN code. It can be edited, deleted, expanded or replaced as

you wish, as long as you comply with the XVAN language syntax.

The remainder of this document describes the contents of the Library:

 Actions (in XVAN actions are called verbs);

 locations;

 objects;

 timers;

 artefacts (descriptions, flags, attributes and triggers);

The annex describes how to include the Librray in your story.

In case you are unfamiliar with XVAN artifacts, each artifact section starts with a short explanation of

the artifact. But you may also want to read the XVAN Introduction document for a more detailed

description.

(c) 2016 – 2022 Marnix van den Bos 5

Verbs
What is a verb?

In XVAN, verbs can be more than just words. A verb may contain instructions to be executed as a

default handler for user input. Default in the sense that no locations or objects in the story have

code to handle the situation.

An example:

$VERB break

 “break *o_subject+”

 printcr(“Trying to break *the+ *o_subject+ is not particularly helpful.”)

ENDVERB

So, whenever a “break something” command from the user is not handled in the story, the verb will

print the message that it’s not very helpful to do this.

The following verbs are available in the Library:

The verbs are listed in alphabetical order.

Verb Synonym(s) Description

are

ask Ask someone about something.

break Break an item.

close Close an item.

cry Cry.

do

does

drop Drop an item.

examine x, investigate Examine an item.

exits Lists the available exits from the current location. When a
destination has been visited before, its name is listed as well.

get take, grab Get an item.

give Give an item to someone/something.

go Move through the world.

goto Travel to a location that has been visited before.

hang Hang an item on/in/behind/... another item.

has

have

help Turn on/off syntax examples for verbs.

inventory i List the player’s possessions.

(c) 2016 – 2022 Marnix van den Bos 6

is

jump Jump.

kick Kick something.

kill Kill someone.

knock Knock on things.

listen Listen, or listen to something.

lock Lock an item.

look l Give long description of room and items in it.

move Move an item.

open Open an item.

poke Poke (in) things.

put Put an item in/on/… something.

quit q Quit the game.

read Read an item.

remember Remember something.

restart Restart the game from the beginning.

restore Restore previously saved progress.

save Save current progress.

say Say something to someone.

score Print the player’s current score and the maximum possible score.

sing Sing.

sit Sit on things.

smell Smell or smell something.

tell Tell someone about something.

testmode Read user input from a file instead of the keyboard.

thank thanks Thank someone.

throw Throw an item in a direction or at/in/… another item.

tie Tie an item to another item.

touch Touch an item.

transcript Log commands and replies in a textfile transcript.txt

turn Turn an item.

undo Tells that we don’t support undo.

unlock Unlock an item.

untie Untie an item from another item.

unuse Sent by the IFI-XVAN GUI when an icon is dropped on an empty
space. Default behavior is drop.

use Sent by the IFI-XVAN GUI when a hyperlink is clicked. Default
behavior is examine.

verbose v Toggle between always printing long room descriptions or only at
first entrance.

(c) 2016 – 2022 Marnix van den Bos 7

wait z Wait 1 or more turns.

wear Wear an item.

xyzzy Tribute to Colossal Cave Adventure.

yell Yell.

A more detailed overview of verbs, the input sentences they support and the flags and attributes

they use is available in a separate document: “XVAN Library verbs”.

If your story needs additional verbs that are not in the Library, these can just be defined in the game

source itself or in an external file that can be referenced from the game file.

(c) 2016 – 2022 Marnix van den Bos 8

Locations
What is a location?

In XVAN, the world is made up of locations. A location can be seen as a room with exits connecting it

to other rooms. The player can move from location to location.

The Library version 1.3 has no predefined locations.

(c) 2016 – 2022 Marnix van den Bos 9

Objects
What is an object?

An object is an item that exists in the XVAN world. Unlike a location, it need not be fixed in place, it

can be manipulated by the user (taken, opened, closed, destroyed,…). An object is always contained

in another object or in a location. Moving upwards in an object’s containment tree, you will always

end up in a location as the top level.

The Library comes with five objects:

Object Purpose Remark

o_player Represents the main character that is
directed by the person playing the
story.

The compiler will throw an error if
there is no o_player object defined.

o_nst No-such-thing object, used when
resolving ambiguities in user input.

The compiler will throw an error if
there is no o_nst object defined.

o_status_window Display a status window in the upper
part of the text window.

Only used in the Glk version of the
interpreter.

o_all Allows to refer to all objects in scope
with certain verbs.

Works for following commands:

“take all”

‘take all from <something>”

“drop all”

“drop all <prepos><something>”

o_it Allows to refer to a previously
mentioned location or object.

Is updated after every move, with the
value of o_subject. Can be loaded
with other values by clearing flag
o_it.f_update_it and then assigning
the desired value to attribute o_it.r_it
Value must be a location or object.

If your story needs additional objects that are not in the Library, these can just be defined in the

game source itself or in an external file that can be referenced from the game file.

Special note for object o_all

Commands with ‘all’ use common triggers t_take and t_drop that are defined in the Library in the all-

object section. These are basic triggers with only necessary checks. In case an object in the game

needs extra checks for take or drop, a local trigger with the same name t_get or t_drop must be

defined in this object.

(c) 2016 – 2022 Marnix van den Bos 10

Timers
What is a timer?

A timer is used to schedule future events, so you don’t have to check for it every turn. A timer has a

value and counts up or down from that value. The timer is updated automatically when it’s on. Once

a preset threshold is reached, the timer will fire a trigger. An example of the use of a timer is

modeling a battery for a flashlight.

The Library comes with one timer:

Timer Purpose Remark

m_init Used to start the story. The timer has
value 0 and fires at 1. The trigger that is
started is o_player.t_init (see artefacts
section)

If your story needs additional timers that are not in the Library, these can just be defined in the

game source itself or in an external file that can be referenced from the game file.

(c) 2016 – 2022 Marnix van den Bos 11

Artefacts
The Library comes with the following artefacts:

Descriptions

What is a description?

A description is an artefact that can hold a string of text. IF works generally have large chunks of text,

which makes the code less readable (print statements can become very long and spread out over

several lines). By storing the text in descriptions, all text for a specific object can be moved to a

central place in the object code, which makes the code better readable.

Descriptions have following syntax:

d_description1 “This is a description text.”

Following descriptions are available from the Library:

All descriptions listed are so called common descriptions – each location and object has them –

unless stated otherwise.

Description Purpose Remark

d_sys Describes how the player can refer to an
object or a location.

d_sys may have more than 1 text string
if an object has more than 1
description.

d_exa Description for examining an object.

d_entr_long Long room description.

d_entr_short Short room description.

d_remember Memory description.

If your story needs additional common descriptions that are not in the Library, these can just be

defined in the game source itself or in an external file that can be referenced from the game file.

$COMMON_DESCRS

 d_descr1, d_descr2, …

Flags

What is a flag?

A flag is used to remember yes/no situations: can something be locked, is something locked, is

something open, is something alive, …. As an example: the verb ‘lock’ uses an object’s flag to check

whether the command to lock something actually makes sense.

A flag definition looks like:

f_flag = <1 or 0>

(c) 2016 – 2022 Marnix van den Bos 12

Generally, value 1 (set) means yes and 0 (clear) means no.

Functions setflag() and clearflag() are used to manipulate flags.

Following flags are available from the Library:

All flags listed are so called common flags – each location and object has them – unless stated

otherwise.

Flag Purpose Default Remark

f_alive Tells if an object is alive. 0

f_any Used to group objects for
synchronize() and count()
functions.

1

f_bypass Tells the interpreter to always
consider this object when
mapping user input to objects.

0 System defined.

f_container Tells if an object can contain
other objects.

0

f_first Used to determine when to
print the starting text of the
item list.

1 Local flag defined with the
mandatory player object.

f_hidden Tells the interpreter to never
consider this object when
mapping user input to objects.

0 System defined.

f_fixed Tells whether an object is fixed
in place.

f_lit To determine whether an object
is lit.

0 System defined.

f_lockable Tells if an object can be locked. 0 Says nothing about the object
actually being locked.

f_locked Tells if an object is locked. 0

f_may_save Tells if the game may be saved. 1 Local flag defined with the
mandatory player object.

F_may_undo Tells if the last move may be
undone

1 Local flag defined with the
mandatory player object.

f_opaque If no, object is see through. 0 System defined.

f_open Tells if an object is open. 0

f_openable Tells if an object can be opened. 0 Says nothing about the object
actually being open.

f_scenery 0

f_seenbefore If yes, short room description
will be printed.

0

(c) 2016 – 2022 Marnix van den Bos 13

f_supporter Tells is an object is a supporter
(i.e. something can be put on it).

f_swap If there is more than 1 system
description, the interpreter will
refer to a location or object with
the same description as the
player used.

0 System defined.

f_takeable Tells if an object can be picked
up.

0

f_verb_help Used to determine if verb
syntax examples are active.

1 Local flag defined with the
mandatory player object.

f_verbose Tells whether to always print
long room descriptions

0 Local flag defined with the
mandatory player object.

f_wearable Tells whether an item can be
worn

0

f_worn Tells whether an item is actually
worn.

0

If your story needs additional common flags that are not in the Library, these can just be defined in

the game source itself or in an external file that can be referenced from the game file.

$COMMON_FLAGS

 f_flag1 = 0

 f_flag2 = 1

 …

Attributes

Why do we need attributes?

An attribute is used to remember information other than yes/no. Attributes can contain pretty much

any type of information: location, object, number, description, another attribute, …

The “=” operator is used to assign a value to an attribute:

r_attribute = <value>

Following attributes are available from the Library:

All attributes listed are so called common attributes – each location and object has them – unless

stated otherwise.

(c) 2016 – 2022 Marnix van den Bos 14

Attribute Purpose Default Remark

r_do Storing an item’s conjugation
for ‘to do’

does

r_have Storing an item’s conjugation
for ‘to have’

has

r_is Storing an item’s conjugation
for ‘to be’.

is

r_key Store he key that unlocks a
locked item.

none

r_max_score The maximum score for the
story.

0 Local attribute defined with the
mandatory player object

r_nr_to_reveal The number of items that
must be printed when
opening a container.

0 Local attribute defined with the
mandatory player object

r_preposition Building correct sentences
when referring to an item’s
position.

none System defined.

r_score The player’s current score. 0 Local attribute defined with the
mandatory player object

If your story needs additional common attributes that are not in the Library, these can just be

defined in the game source itself or in an external file that can be referenced from the game file.

$COMMON_ATTRIBUTES

 r_attr1 = <value>

 r_attr22 = <value>

 …

Triggers

What is a trigger?

A trigger is a small program that is executed based on the input from the person playing the story.

XVAN has a number of functions that can be used in triggers.

An example of a trigger is:

t_hidden_passage

 printcr(“Moving the rock reveals a dark passage down!”)

 printcr(“Your score just went up by 50 points.”)

 newexit(%this, down, l_cave)

 o_player.m_score += 50

 agree()

Explanation: this trigger creates a new exit from the current location downwards to the cave. The

player’s score is increased with 50 points.

(c) 2016 – 2022 Marnix van den Bos 15

Printcr() and newexit() are examples of XVAN functions. An overview of XVAN functions is available in

the document: “XVAN functions”.

We link the trigger to the applicable user input through a statement like:

“move *o_rock+” -> t_hidden_passage

This tells the interpreter to fire the trigger when the user command resolves to “move rock”.

The Library comes with the following triggers:

Description Purpose Remark

t_init Starts the story. Prints the opening
message and does some other stuff.

This is a local trigger defined in the
player object’s trigger section.

t_move Lets the player object travel through the
world.

This is a local trigger defined in the
player object’s trigger section.

t_entrance The entrance() function calls the
t_entrance trigger for each object in
scope. The entrance() function is usually
called when the player enters a new
location.

t_i Prints the item’s description for the
inventory command.

In case an item must respond to the
inventory command, the statement
“inventory” ->t_i must be in the item’s
trigger section.

t_reveal Is used for printing a list of items
separated by commas.

Attribute r_nr_to_reveal must be set to
the correct value.

If your story needs additional common triggers that are not in the Library, these can just be defined

in the game source itself or in an external file that can be referenced from the game file.

$COMMON_TRIGGERS

 t_trigger1

 <trigger code>

 t_trigger2

 <trigger code>

(c) 2016 – 2022 Marnix van den Bos 16

Templates
The Library can be used with any IF work created with XVAN. This gives a head start1, you now only

have to think about locations, objects and timers.

Note: use the template files that come with the Library. Copy/pasting the templates from the text in

this document may contain formatting characters that will cause compile errors.

Verbs

A verb can be defined in the story file with following syntax:

$VERB name

 PROLOGUE

 <actions to be performed before anything else for this verb is done>

 EPILOGUE

 <actions to be performed after everything for this verb has been done>

 “user command to respond to”
 <…code…>

 “user command to respond to”
 <…code…>

 DEFAULT
 <code to execute wen nothing else fired>

ENDVERB

Some remarks:

 User input is offered to locations and objects first. If the input is not handled there, then it is

offered to the verb. Exception: the verb prologue – when present – is always executed first.

The Library comes with 48 verbs and some synonyms.

1
 When your story progresses you may want to (most certainly will) add additional sections with verbs,

dictionary words and artefacts specific for your story.

(c) 2016 – 2022 Marnix van den Bos 17

Locations

A location can be defined in the story file with following syntax:

$LOCATION l_location-identifier # location names must start with ‘l_’

 DESCRIPTIONS

 d_sys “system description 1”, “system description 2”

 d_entr_long “long description, printed when entering the location”

 d_entr_short “short description”

 d_other “other descriptions”

 FLAGS

 f_flag1 = 0

 f_flag2 = 1

 ATTRIBUTES

 r_attribute1 = <attribute value>

 r_attribute2 = <attribute value>

 TRIGGERS

 “some command that the player typed” -> t_trigger1

 “teleport to *l_starship+” -> t_trigger2

 t_trigger1

 # code for trigger 1, sample below

 printcr(“You have started trigger 1.”)

 agree()

 t_trigger2

 move(o_player, l_starship)

 entrance(l_starship) # call t_entrance for starship and contained objects

 agree()

 END_LOC

Some remarks:

 Lines starting with ‘#’ are comments.

 Location identifiers must start with ‘l_’

 l_location-identifier is only used in XVAN code to refer to the location.

 d_sys descriptions are used to map user commands to the location.

 d_sys text strings therefore must obey XVAN English grammar rules and must be in the

dictionary

(c) 2016 – 2022 Marnix van den Bos 18

Objects

An object can be defined in the story file with following syntax:

$OBJECT l_object-identifier # location names must start with ‘o_’

 DESCRIPTIONS

 d_sys “system description 1”, “system description 2”

 d_entr_long “long description, printed when entering the object’s location”

 d_entr_short “short description”

 d_exa “printed when the object is examined”

 d_other “other descriptions”

 CONTAINED in l_location-identifier

 FLAGS

 f_flag 1 = 0

 f_takeable = 1 # may be picked up

 ATTRIBUTES

 r_attribute1 = <attribute value>

 r_attribute2 = <attribute value>

 TRIGGERS

 “some command that the player typed” -> t_trigger1

 “inventory” ->t_i # common trigger not defined here

 t_trigger1

 # code for trigger 1, sample below

 printcr(“You have started trigger 1.”)

 agree()

END_OBJ

Some remarks:

 The CONTAINED section tells where the object is located (location or other object). Other

prepositions than ‘in’ may also be used. The preposition will be stored in the object’s

r_preposition attribute, so it can be used in trigger code for printing, testing etc.

 The t_i trigger is not defined with the object because it is a common trigger (see artifacts

section). You may define a t_i trigger locally in the object’s trigger section if you need

behavior that is different from the common trigger. The local trigger will then override the

common trigger.

(c) 2016 – 2022 Marnix van den Bos 19

Timers

A timer can be defined with following syntax:

m_timer-identifier # timer names must start with ‘m_’

 value <number>

 step <number> # number to increase/decrease by

 direction <up / down>

 interval <number> # update interval (1 updates every turn)

 state go / stop

 trigger_at <number> [or_more] / [or_less] # value when to execute the trigger

 execute <trigger>

Some remarks:

 Because a timer is defined stand alone and not within a location or an object, the trigger to

be executed must be preceded by the location or object to execute it for. E.g.

o_lamp.t_empty.

 The state can be manipulated with functions starttimer() and stoptimer().

(c) 2016 – 2022 Marnix van den Bos 20

Redefining verbs and common triggers
Suppose you need a verb or a trigger from the Library to behave different than is coded in the

Library.

As an example, let’s assume you want the command ‘x’ not to be a synonym for ‘examine’ as defined

in the Library, but to be a command to return the player’s to his previous location.

If you just add a new verb “$VERB x”, the XVAN compiler will throw a multiple defined verb error,

because ‘x’ is already defined as a verb.

One way to handle this, would be the change the code in the Library:

$VERB examine SYNONYM x

 < …code… >

ENDVERB

would become:

$VERB examine

 < …code… >

ENDVERB

And you would define a new verb in your story:

$VERB x

 move(o_player, o_player.r_previous)

 entrance(o_player.r_previous)

ENDVERB

Although this works perfectly well, it introduces a version control issue with the Library as there is

now a Library version specifically for this story. When distributing the sources of your story, you must

also distribute the modified Library.

To prevent this issue, from XVAN 2.3.2 it is possible to redefine verbs and common triggers. In the

example above it suffices to just redefine the verb ‘x’.

$REDEFINE_VERB x

 move(o_player, o_player.r_previous)

 entrance(o_player.r_previous)

ENDVERB

(c) 2016 – 2022 Marnix van den Bos 21

The XVAN compiler will remove ‘x’ as a synonym for examine and assign it to the new code. It is also

possible to create synonyms with a redefine.

E.g:

$REDEFINE_VERB x SYNONYM exit SYNONYM out

 move(o_player, o_player.r_previous)

 entrance(o_player.r_previous)

ENDVERB

Analogue to $REDEFINE_VERB there is also $REDEFINE_TRIGGER, which redefines a common trigger.

(c) 2016 – 2022 Marnix van den Bos 22

IFI-XVAN
As of XVAN version 2.3.4, a version with a graphical user interface (GUI) is available: IFI-XVAN2. IFI-

XVAN consist of a back-end and a front-end, the back-end being XVAN and the front-end being the

Brahman GUI developed by Strandgames. XVAN and GUI communicate by exchanging text strings

according to the JSON-format.

The IFI Library contains several verbs, flags, attributes and triggers that are used by XVAN to

communicate with the GUI. E.g. sending possible exits, updating the player’s current location,

sending file names from pictures etc.

Note: for information on how to “ifify” an XVAN story, please refer to the IFI-XVAN document.

At the end of each turn, all necessary updates are sent to the GUI. This is an automatic process that

does not require any coding by the author, as long as you use the IFI Library.

Following locations, objects, timers and artefacts are in the IFI library:

Verbs

Verb Synonym(s) Description

ifi_exits -- Sends the current location’s exits to the GUI.

ifi_items -- Sends the player’s inventory to the GUI.

lfi_people -- Sends a list of characters the player has already met to the GUI.

ifi_loc -- Sends the player’s current location’s id to the GUI.

ifi_map -- Sends the story’s map data to the GUI.

ifi_picture -- Sends the current locatoi’s background picture to the GUI.

Ifi_update_gui -- Executes all of the above verbs.

Locations

Locations Purpose Remark

l_json Home for several flags, triggers,
attributes etc.

Objects

The ifi library has no predefined objects.

2
 IFI stands for Interactive Fiction Interface.

(c) 2016 – 2022 Marnix van den Bos 23

Timers

Timer Purpose Remark

m_ifi Triggers the t_ifi trigger from l_json at
the end of each move.

Descriptions

Description Purpose Remark

d_map_backimage Used to store pathname of the
story’s opening screen
background image.

Path is always \images\coverimage.png
relative to the datadir.

This is a local description with location
l_json.

Flags

The ifi library has no predefined flags.

Attributes

Attribute Purpose Default Remark

r_gx A location’s x-coordinate on
the map.

0

r_gy A location’s y-coordinate on
the map.

0

r_ifi_picture Hold a location’s picture file
path.

“”

r_ifi_icon Hold an object’s icon file path. “”

r_ifi_maplevel Height level on a 3D map 0 Attribute with l_json object.

r_ifi_maptext Header text for the map 0 Attribute with l_json object.

Advice is to define descriptions
in the story and use t_entrance
triggers to assign the right
description to r-ifi_maptext.

Triggers

Description Purpose Remark

t_ifi Execute all necessary ifi-actions at the
end of a move.

Is a local trigger with location l_json.

t_ifi_items If the object is in the player’s inventory,
the object id and icon path will be sent

(c) 2016 – 2022 Marnix van den Bos 24

to the GUI to display in the inventory.

t_ifi_items_id Sends the object id to the GUI to display
on the map.

Only applies to objects that are directly
in the location (and not in other
objects).

t_ifi_people If the player has met the object before,
it will send the object’s id and icon to
the GUI.

Tests common flag f_seenbefore from
the character.

t_ifi_place Sends location information to the GUI. Position on the map, exits, name, id,
contained items. Used to draw the
map.

t_ifi_exits Sends exit information for a location Used to render the clickable compass
rose on the GUI.

(c) 2016 – 2022 Marnix van den Bos 25

Annex: using the Library in your story
The XVAN Library is a single file called something like “XVAN Library x-y.lib”.

The file must be placed in the same folder as your story file(s). In your story file, insert the .lib file

with the line:

 $insert ".\\XVAN Library x-y.lib" or

 $insert “.//XVAN Librray x-y.lib”

